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Abstract: This paper presents a novel anomaly detection methodology for the protection of 

electricity critical infrastructures that learns the normal behaviour of the system, builds up a 

profile and detects anomalous operations which deviate from the profile. This can be used to 

identify attacks, failures and accidents and it can also be used to improve state estimation, 

correct topology errors and inform the operators about potential discrepancies between their 

view of the network and its actual state. This paper will cover two of the anomaly-detecting 

techniques that we have been developing for electricity networks - invariant induction and 

simulated ants – and a Bayesian methodology for integrating the output of these detectors. The 

results presented in this paper demonstrate that this technique could make a significant 

contribution to the security of electricity critical infrastructures. 

1. Introduction  

With the increasing interconnectivity between electricity management network, corporate 

network and the internet, electricity cyber infrastructures are becoming more and more 

exposed to outside attackers. This tendency has been accelerated by the widespread 

introduction of commercial off the shelf software and standard TCP/IP networks. Although 

traditional intrusion detection systems, anti-virus software and firewalls are used to protect the 

infrastructure, these signature-based solutions have a limited ability to detect and defend 

against rapidly emerging new attacks, as the spread of Slammer into a nuclear control centre 
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made clear [1][2]. To complement and improve the performance of these signature-based 

methodologies, we are working on an anomaly detecting approach that learns the normal 

behaviour of the system, builds up a profile and detects anomalous operations which deviate 

from the profile. This profile can also be used to improve state estimation, correct topology 

errors and inform the operators about potential discrepancies between their view of the 

network and its actual state – one of the factors that contributed to the recent U.S. blackout [3].  

There are a number of ways in which anomaly-detecting methodologies could enhance the 
integrity and security of electricity data. To begin with, it could act as a useful complement to 

existing techniques for verifying the likely correctness of electricity measurements and give 

operators constant feedback about the integrity and reliability of the data. Anomaly detection 

detects any abnormal changes, whether they are caused by software bugs, attackers, or strange 

network conditions, and this would be extremely useful for bringing operators’ attention to 

problem areas before they start to threaten the stability of the system. This would also be 

invaluable in the face of attackers who attempt to manipulate or corrupt the electricity data. A 

second application of anomaly detection is the improvement of standard protection devices, 

such as the IDS and virus checker. These are generally signature based, and even when a 

limited form of anomaly detection is deployed it is usually blind to the type of data that is 

being transmitted over the network. Electricity-specific anomaly detection would be much 

more accurate than generic techniques and it could be correlated with other security 

components to improve the integrity of the electricity cyber-infrastructure. This 

cross-correlation could also be used to reduce the large number of alerts that are generated by 

intrusion detection systems. Electricity-specific anomaly-detecting methodologies could also 

help with some of the traditional tasks carried out by electricity operators, such as the 

generation of pseudo-measurements and state estimation.  

This paper will cover two of the anomaly-detecting techniques that we have been developing 

for electricity networks - invariant induction and artificial ants – and a Bayesian methodology 

for integrating the output of these detectors which dramatically reduces the number of false 

positives. 

2. Invariant Detection and Artificial Ants with Bayesian Reasoning Approach 

2.1 Invariant Detection in Electricity Cyber Infrastructures 

The automatic identification of invariants was introduced by Ernst [4] who used test data 

samples to discover invariants at points in a program, e.g. immediately after entry to a 

procedure and prior to returning a value. In electricity networks, invariants are discovered by 

looking for relationships between the different data readings. This approach is particularly 

effective in the data from electricity networks since most of the data is interrelated in a 

systematic manner. For example, in the networks that we have experimented on, the 

relationship between the power flow readings at either end of a line are, to a high degree of 

accuracy, of the form P1 = kP2 + C, where k and C are constants. Some relationships, such as 

the one just mentioned are based on physical relationships and the unknown constant depends 



on the length of the line, but others could be empirical relationships that are found in the 

training data such as the ranges of specific power readings. As more data comes in, some of 

these relationships are discarded because they no longer hold and eventually one is left with a 

set of relationships which hold for all of the training data. The strength of using invariants is 

that they hold for all states of the network, which is a great advantage for complex systems 

which have many normal states and where learning all the different models of normality is not 

a viable option. One of the weaknesses of this approach is that invariants do not cover all 

relationships in the data, particularly those empirical relationships that are not anticipated from 

simple consequences of structure and may be particular to a current and perhaps long standing 

state (e.g. switch setting.) 

We have implemented three invariant checkers. They are a Range Checker, a Linear Invariant 
Checker and a Bus-zero-sum Checker.  

1) The Range Checker 

The range checker learns a range for each reading from the normal electricity data set in 
the training phrase. In the detection phase, a reading P is checked to see if it is in the range 

or how far it deviates from the upper boundary or lower 

boundary: ],[ maxmin ePePP +−∈ . The range threshold e measures the tolerance allowed 

in the range for it still to be considered normal. This approach can be powerful with many 

types of corruption. However it is not adaptive for network topology changes. When 

switch condition changes, the Range Checker may generate a lot of false positives and 

false negatives because the learnt normal profile is no long valid. 

2) The Linear Invariant Checker 

According to Ohm’s Law, a linear relationship exists between two power readings on each 
end of a transmission and transformation line. This is not strictly true of real electricity 

lines, but it is approximately true in many cases. In the training phase regression 

coefficients are calculated against the normal electricity data set. When the Linear 

Invariant Checker examines the power reading on a line, it takes one reading and the 

previously calculated regression coefficient and calculates the reading at the other end of 

the line: 21 * PaP = . If the deviation from the calculated 1P  to the expected reading P̂  

is within the bounds defined by the 99% confidence interval, it will be considered as a 

normal reading. Notice that if any of the switches is open then both power readings should 

be zero. The linear Invariant is an approximate invariant in an electricity network, and so 

it continues to hold even when the network topology changes it do not need to be trained 

again. This makes the Linear Invariant Checker a good complement to the Range Checker. 

However because linear invariants only exist on transmission and transformation lines, 

their effect is limited.  

3) The Bus-zero-sum Checker 

According to Kirchoff’s Law, current that flows into a bus must equal to the current that 
flows out. If the voltage is constant, the power that flows in should match the power that 



flows out. When the Bus-zero-sum Checker exams each bus, it adds the inflow power and 

outflow power together as vectors. If the result lies outside the threshold range [-e, e], then 

it indicates an anomaly, i.e.: ],[321 eePPP −∈++  

The Bus-zero-sum is a true invariant in the electricity network and it does not even need to 
be trained. The disadvantage of the Bus-zero-sum checker is that it is not very specific 

about which reading is corrupted because significant errors in any of the readings on one 

bus will cause the sum of readings on the bus to deviate from zero.  

The performance of these three invariant checkers will be discussed in section 4 of this paper. 

2.2 Artificial Ant Approach 

In Artificial ant clustering [5], a model of normality is built up by clustering according to the 

real and reactive power values of a group of substations. The artificial ants move around with 

the assistance of pheromone trails on a two dimensional grid in which the high dimensional 

vectors of electricity data readings are represented as items that are picked up and dropped. A 

distance function is used to compare a particular item with the eight surrounding cells of the 

cell where the ant is located and if there is a high density of similar items, then the probability 

of that item being dropped or left in that location is high. Once the clusters have been learnt, 

they can be used to identify anomalous data by comparing the new data item with each of the 

cells on the grid. The new data item does not fit into the model if its dropping probability 

remains low over all the cells. One of the advantages of the ant-based approach is that the ants 

continually reshuffle all the data to optimise the clustering over time and so it exhibits a natural 

form of homeostasis. However, this can create problems with false positives when the degree 

of change is high and this is one of the reasons why we elected to integrate this anomaly 

detecting method with other techniques.  

2.3 Bayesian Reasoning 

To take advantage of the different strengths of the linear invariant and artificial ant detectors 

we have developed a Bayesian framework, which takes the output from the invariant and 

artificial ant anomaly detectors and reasons about the likelihood that they are producing a true 

or false positive. In this way, the limitations of the individual anomaly detecting methodologies 

are overcome and the accuracy of the method is substantially increased. This Bayesian 

approach is especially useful in electricity networks since it can combine the output of the 

anomaly detectors with information about the range of the readings, missing readings and 

known properties of the network. This more comprehensive framework greatly increases the 

accuracy of the results and the quality of the information that is passed to the human operator 

when an anomaly is detected. An extract from one of the Bayesian networks used in our 

experiments is shown in Figure 1. In this network the probability that reading i is correct is 

calculated by combining the invariant detector’s evaluation of reading i with the artificial ant’s 

evaluation of reading i along with other information about the network, such as the switch state 

and whether the sum on the bus is zero. 



 

Figure 1 Bayesian network integrating information for a bus. The nodes in the bottom half are the 

assertions for which the beliefs are to be determined. Nodes near the top are observations about the truth 

of invariants and from the anomaly detectors with other information about the electricity network.  

3. Previous Work 

Many of the methods for identifying bad measurements and topology errors use the past state 

of the system to make their judgments and in this sense they could be described as a form of 

anomaly detection. For example, forecasting-aided state estimation (FASE) makes predictions 

about the future state of the system based on its past behavior and uses the difference between 

the latest acquired measurements and the forecast data to detect inconsistent data [6, 7]. Some 

systems based on this technique use statistical models and there have been a number of 

systems based on artificial neural networks (for example, [8, 9]), which are often combined 

with other techniques, such as gap statistical algorithms [10]. However, the motivation behind 

all of these approaches has generally been to identify and eliminate bad measurements, rather 

than develop a general measure of the normality level of the electricity data, which could also 

be used to secure the cyber-infrastructure. There has also been little application of the types of 

anomaly-detecting techniques which have been developed within other areas, such as artificial 

immune systems, artificial ants, n-grams and invariant induction. 

Within SCADA systems, Balducelli et al. [11] have developed a technique for monitoring the 

event sequences and timing relationships of the transmission and polling of telesignals and 

telemeasures. This uses case-based reasoning to build up a model of the different event courses 

and compare them with the sequences currently in progress. This system operates on the 

sequences and timing information of the telesignals and telemeasures that are sent through the 

cyber-infrastructure and not on the electricity measurements that are transmitted and so has no 

notion of correctness of the data. 

We have also carried out some preliminary work on anomaly detection in electricity data using 



some of the methods that have been developed within other areas [12]. Using data from a 

simple six bus network we tested the ability of the n-gram technique [13] and invariant 

induction [4] to build up a model of the electricity data and detect errors in it. In this simple set 

up the n-gram method identified 98 % of the corrupt data sets with a 1% false positive rate and 

the invariant induction identified approximately 85% of the corrupt data with almost no false 

positives. Since the true and false positives of these two methods were not coincident, we 

carried out some unpublished experiments, which combined the output from the two 

anomaly-detecting techniques using a Bayesian network. This substantially improved the 

overall performance. 

4. Experiments and Discussion 

To evaluate our methodology, we generated a year’s worth of normal and corrupted electricity 

data on a test bed which emulates the cyber infrastructure of an electricity network in some 

detail. This was based on the test network developed by the IST-Safeguard project [14], but 

with a number of extensions and modifications. The QMUL test bed consists of a simulation of 

the physical electricity network, software that corrupts and filters electricity data, an emulation 

of a SCADA system, an emulation of the state estimation process at the control centre and a 

simulated operator, which monitors the state estimation and applies manoeuvres to the 

simulated physical network. For the state estimation and load flow calculations we used 

e-Agora (Advanced Grid Observation Reliable Algorithms) and the IEEE RTS 96 24-Bus 

network model [15]. Five different types of corruption were applied to the electricity data. 

These reflect the fact that electricity measurements can be altered by random noise, attacks, 

software bugs, meter failures, electromagnetic interference and transmission errors. 

1) Constant bias with normally distributed deviations. This added a constant bias to 
the telemeasure values and a bias error sampled from independent normal distributions 

with zero mean. The corrupted value X’ of the telesignal X is computed according to 

equation (1), where EN(0,1) is a standard random value following a N(0,1) distribution 

and sigma (S) is standard deviation of the bias error (B). 

)1)*((*)(*)(' )1,0(),1( 2 ++=+= SEBXEBXX NSN
  (1) 

2) Loss of decimal point (Mantissa). This simulates the situation in which an analogue 

value loses information about the position of the decimal point. The corrupted value of 

the telemeasure is calculated by ‘taking out’ the decimal point. 

3) Sign switch. This type of corruption is used to simulate the situation in which an 
analogue telemeasure changes its sign.  

4) Fixed at fixed value. The value of a telemeasure is ‘frozen’ for one week, instead of 

changing along with the rest of the electricity data. This could result from a software 

bug or meter failure.  

5) Fixed at random value. The value of a telemeasure is replaced by a random value, 
which is held constant for a week. This could result from a software bug, meter failure 



or a deliberate attempt to corrupt the system.  

This data generated by QMUL electricity test bed was used to train and test the invariant and 
the artificial ant anomaly detectors; both individually and with their output integrated using the 

Bayesian network. This data has also been made available online for the benefit of other 

researchers [16]. 

4.2 Results of the Range Checker 
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Figure 2 ROC curve of Range Checker on five types of attack corruptions 

From the ROC curve, it can be seen that the Range Checker is good for Mantissa, Sign Switch 

and Fixed to Random Value types of corruption, which shows that it is capable of detecting 

obvious abrupt changes. The Range Checker does not perform as well on Sign Switch 

corruption as for the Mantissa corruption because when small, near zero values are corrupted 

by a sign switch, the changes are too subtle to be detected by the Range Checker.  

The Range Checker does not perform well on Bias corruption because the bias and sigma 
values (5 and 0.15 respectively) do not lift the corrupt readings far enough above the 

background noise to be detected by a simple range check. The Range Checker performs poorly 

on Fixed to Previous Value corruption because fixed previous values are still within the learnt 

ranges, even though they are inconsistent with the rest of the electricity data.  



4.3 Results of the Linear Invariant Checker 
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Figure 3 ROC curve of the Linear Invariant Checker on five types of attack corruptions 

The ROC curve of the Linear Invariant Checker shows reasonable performance on all the types 

of corruption. The limitation of this technique is that linear relationships only hold on the real 

power readings at either end of the lines and so it cannot be used to detect errors in the other 

readings. It is also unable to identify which of the two power readings is causing the linear 

relationship to fail. 

4.4 Results of the Bus-zero-sum Checker 
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Figure 4 ROC curve of the Bus-zero-sum Checker on five types of attack corruptions 

Like the Range Checker, the Bus-zero-sum Checker did not work well against sigma and bias 

corruption because the changes introduced by these quite close to the background noise and so 

they can only be picked when the threshold is extremely strict, i.e. the checker is very sensitive, 

which caused a high false positive rate. The Bus-zero-sum Checker had a poor performance on 



the Fixed to Previous value corruption, probably because the “stuck” power readings are still 

close to their actual value. 

4.5 Results of Ant Clustering Anomaly Detection 
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Figure 5 ROC curve of Ant Clustering Anomaly Detection 

The results for Fixed Previous corruption showed true positive detection to be consistently 
above 97% for the ant clustering. This is an indication of the early promise of ant clustering for 

electricity specific anomaly detection. Although mantissa corruption detection is lower than all 

the other forms of anomaly detection tested, since ant clustering is intended to complement and 

not replace other forms of anomaly detection this could be accepted but is likely to be 

improved. Sign switch corruption detection is also lower than expected given the obviousness 

of the corruption. The detection rates for Mantissa and Sign may be a result of the normalising 

that the ants apply to the data, which does not tolerate linear changes. We are working on a way 

for ants to better recognise big discrepancies between data points while retaining normalising 

tendencies. 

The advantage of Ant Clustering is that it is able to process diverse types of data in the same 

way. However, the distance function possibly needs to be more electricity data specific to 

improve the detection of more subtle corruption such as Bias corruption. At the same time it is 

important to retain the incremental features of the ants as they are able to adapt the normal 

model in accordance with changes in the state of the electricity network through the seasons.  



4.6 Results of Bayesian Network Reasoning 
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Figure 6 ROC curve of Bayesian networking reasoning with the Range Checker, the Linear Invariant 

Checker and the Bus- zero-sum Checker 

Although these results look significantly worse in some respects than those for the zero sum 

and linear invariant, these results are for the identification of corruptions in individual power 

readings, whereas the linear invariant induction results are only for the detection of errors in 

pairs of readings, the ant results are for a collection of readings and the zero sum results are for 

the detection of errors in all of the readings on a bus. This means that it is the comparison with 

the range checker that is the most important, which is the only other methodology to work on 

all of the readings. The most obvious gains from using the Bayesian network are that false 

positive rate has decreased and the true positive rate for detecting Fixed to Previous Value 

corruption has greatly improved. The Range Checker used to be blind to this type of corruption 

but with the help from the other two checkers and Bayesian network, the true positive rate has 

substantially increased. There has also been a significant improvement in the true positive rate 

for the Bias and Sigma corruption. 

5. Conclusion 

This paper has outlined some of the contemporary threats to the electricity cyber infrastructure 

and investigated two novel approaches to anomaly detection on electricity data. One uses 

underlying physical knowledge to express and capture invariants in the data and the other uses 

artificial ant clustering to capture relationships between elements that are not covered by the 

invariants and which are more subject to change as the system configuration changes. A 

Bayesian network has been used to integrate the output from these three anomaly detectors and 

results in less false positives and significantly improved detection rates for some of the 

corruption types.  
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