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Abstract: This paper presents a novel anomaly detection methodology fpratetion of
electricity critical infrastructures that learns themal behaviour of the system, builds up a
profile and detects anomalous operations which deviate tnerprofile. This can be used to
identify attacks, failures and accidents and it can hks used to improve state estimation,
correct topology errors and inform the operators abowgntiat discrepancies between their
view of the network and its actual state. This paperaeiler two of the anomaly-detecting
technigues that we have been developing for electricitywanks - invariant induction and
simulated ants — and a Bayesian methodology for infagrtte output of these detectors. The
results presented in this paper demonstrate that thisiqeehcould make a significant
contribution to the security of electricity critical infitauctures.

1. Introduction

With the increasing interconnectivity between electrigitghagement network, corporate
network and the internet, electricity cyber infrastnnes are becoming more and more
exposed to outside attackers. This tendency has been rategbldy the widespread
introduction of commercial off the shelf software and déad TCP/IP networks. Although
traditional intrusion detection systems, anti-virus sofenend firewalls are used to protect the
infrastructure, these signature-based solutions have adinaibility to detect and defend
against rapidly emerging new attacks, as the spreathofn®r into a nuclear control centre
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made clear [1][2]. To complement and improve the performafichese signature-based
methodologies, we are working on an anomaly detecting apptbatHearns the normal
behaviour of the system, builds up a profile and detects @pbamoperations which deviate
from the profile. This profile can also be used to imprstage estimation, correct topology
errors and inform the operators about potential discopsrbetween their view of the
network and its actual state — one of the factors thatibatdd to the recent U.S. blackout [3].

There are a number of ways in which anomaly-deteatiathodologies could enhance the
integrity and security of electricity data. To beginhyit could act as a useful complement to
existing techniques for verifying the likely correctnesslectricity measurements and give
operators constant feedback about the integrity arabiiity of the data. Anomaly detection
detects any abnormal changes, whether they are caused bgreditwgs, attackers, or strange
network conditions, and this would be extremely usefulbiimging operators’ attention to
problem areas before they start to threaten the stabflithe system. This would also be
invaluable in the face of attackers who attempt to manipataterrupt the electricity data. A
second application of anomaly detection is the improvementaofiatd protection devices,
such as the IDS and virus checker. These are generalytwsigrzmsed, and even when a
limited form of anomaly detection is deployed it is usualiynd to the type of data that is
being transmitted over the network. Electricity-specifimmaly detection would be much
more accurate than generic techniqgues and it could belated with other security
components to improve the integrity of the electricity cyhb&astructure. This
cross-correlation could also be used to reduce the fangber of alerts that are generated by
intrusion detection systems. Electricity-specific anonadtecting methodologies could also
help with some of the traditional tasks carried out bytetgty operators, such as the
generation of pseudo-measurements and state estimation.

This paper will cover two of the anomaly-detecting techniquaswie have been developing

for electricity networks - invariant induction and adidil ants — and a Bayesian methodology
for integrating the output of these detectors which drasailitireduces the number of false

positives.

2. Invariant Detection and Artificial Antswith Bayesian Reasoning Approach

2.1 Invariant Detection in Electricity Cyber Infrastiues

The automatic identification of invariants was introducedBogst [4] who used test data
samples to discover invariants at points in a program, ieugpediately after entry to a
procedure and prior to returning a value. In electrio#works, invariants are discovered by
looking for relationships between the different data readimgs approach is particularly
effective in the data from electricity networks sincestnof the data is interrelated in a
systematic manner. For example, in the networks thathswe experimented on, the
relationship between the power flow readings at either &mdline are, to a high degree of
accuracy, of the form P1 = kP2 + C, where k and C amstants. Some relationships, such as
the one just mentioned are based on physical relationshipeendknown constant depends



on the length of the line, but others could be empirical oglakiips that are found in the
training data such as the ranges of specific power readikggmore data comes in, some of
these relationships are discarded because they no longaritbilentually one is left with a
set of relationships which hold for all of the trainingaddthe strength of using invariants is
that they hold for all states of the network, which igreat advantage for complex systems
which have many normal states and where learning atlifteeent models of normality is not
a viable option. One of the weaknesses of this approachtisntizaiants do not cover all
relationships in the data, particularly those empiriekdtionships that are not anticipated from
simple consequences of structure and may be particudacucrent and perhaps long standing
state (e.g. switch setting.)

We have implemented three invariant checkers. They Riamge Checker, a Linear Invariant
Checker and a Bus-zero-sum Checker.

1) The Range Checker

The range checker learns a range for each reading fronothml electricity data set in
the training phrase. In the detection phase, a re®tlisghecked to see if it is in the range
oo how far it deviates from the upper boundary or lower

boundaryP L[ P,,, — € P, *+€]. The range threshokimeasures the tolerance allowed

in
in the range for it still to be considered normal. Tiggraach can be powerful with many
types of corruption. However it is not adaptive for netwtmkology changes. When

switch condition changes, the Range Checker may generatefafidse positives and
false negatives because the learnt normal profile is novialid)

2) The Linear Invariant Checker

According to Ohm’s Law, a linear relationship exists betwegvo power readings on each
end of a transmission and transformation line. This isstrictly true of real electricity

lines, but it is approximately true in many cases. In tianihg phase regression
coefficients are calculated against the normal eldistridata set. When the Linear
Invariant Checker examines the power reading on a linekés tane reading and the
previously calculated regression coefficient and caleslttie reading at the other end of

the line: P, = a* P,. If the deviation from the calculateB, to the expected reading

is within the bounds defined by the 99% confidence intervaljlitbe considered as a
normal reading. Notice that if any of the switches isrofhen both power readings should
be zero. The linear Invariant is an approximate invafiaah electricity network, and so
it continues to hold even when the network topology changesribtineed to be trained
again. This makes the Linear Invariant Checker a good comepleto the Range Checker.
However because linear invariants only exist on transmissidntransformation lines,
their effect is limited.

3) The Bus-zero-sum Checker

According to Kirchoff's Law, current that flows intolais must equal to the current that
flows out. If the voltage is constant, the power that flawshould match the power that



flows out. When the Bus-zero-sum Checker exams each bdsisitlze inflow power and
outflow power together as vectors. If the result lies outsidetreshold range [-e, €], then

it indicates an anomalie.:R, + P, + P, J[—e €]
The Bus-zero-sum is a true invariant in the electrioéfwork and it does not even need to
be trained. The disadvantage of the Bus-zero-sum checlt@iti#t is not very specific

about which reading is corrupted because significant emasy of the readings on one
bus will cause the sum of readings on the bus to deviate fiam ze

The performance of these three invariant checkerdwitliscussed in section 4 of this paper.

2.2 Artificial Ant Approach

In Artificial ant clustering [5], a model of normality Built up by clustering according to the
real and reactive power values of a group of substatiomsaifificial ants move around with
the assistance of pheromone trails on a two dimensionaingvithich the high dimensional
vectors of electricity data readings are represergetkms that are picked up and dropped. A
distance function is used to compare a particular item tivééheight surrounding cells of the
cell where the ant is located and if there is a highideoBsimilar items, then the probability
of that item being dropped or left in that locatiomigh. Once the clusters have been learnt,
they can be used to identify anomalous data by comparing whdata item with each of the
cells on the grid. The new data item does not fit intontleelel if its dropping probability
remains low over all the cells. One of the advantages @rtthbased approach is that the ants
continually reshuffle all the data to optimise the clustgover time and so it exhibits a natural
form of homeostasis. However, this can create probleithsfalse positives when the degree
of change is high and this is one of the reasons why weeéléo integrate this anomaly
detecting method with other techniques.

2.3 Bayesian Reasoning

To take advantage of the different strengths of the limeariant and artificial ant detectors
we have developed a Bayesian framework, which takes utputofrom the invariant and
artificial ant anomaly detectors and reasons aboutkblhiood that they are producing a true
or false positive. In this way, the limitations of thdividual anomaly detecting methodologies
are overcome and the accuracy of the method is substantiatibased. This Bayesian
approach is especially useful in electricity networkges it can combine the output of the
anomaly detectors with information about the range of thdings, missing readings and
known properties of the network. This more comprehensiveefraomk greatly increases the
accuracy of the results and the quality of the informatiamis passed to the human operator
when an anomaly is detected. An extract from one of thedian networks used in our
experiments is shown in Figure 1. In this network the prolbabiiat reading is correct is
calculated by combining the invariant detector’s evaluatioeading with the artificial ant’s
evaluation of readingalong with other information about the network, such asttitch state
and whether the sum on the bus is zero.
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Figure 1 Bayesian network integrating information for a bus. Tledes in the bottom half are the
assertions for which the beliefs are to be deterchiNedes near the top are observations about the truth
of invariants and from the anomaly detectors with oifiermation about the electricity network.

3. PreviousWork

Many of the methods for identifying bad measurements @uuldgy errors use the past state
of the system to make their judgments and in this sengectiidd be described as a form of
anomaly detection. For example, forecasting-aided stiteag®on (FASE) makes predictions
about the future state of the system based on its past behadiuses the difference between
the latest acquired measurements and the forecadbdigtect inconsistent data [6, 7]. Some
systems based on this technique use statistical modelsharel have been a number of
systems based on artificial neural networks (for exanfi®le9]), which are often combined
with other techniques, such as gap statistical algoriftiis However, the motivation behind
all of these approaches has generally been to identifglanohate bad measurements, rather
than develop a general measure of the normality level afldutricity data, which could also
be used to secure the cyber-infrastructure. There habeds little application of the types of
anomaly-detecting technigues which have been developed witténareas, such as artificial
immune systems, artificial ants, n-grams and invaiighiction.

Within SCADA systems, Balducelli et al. [11] have develd@ technique for monitoring the
event sequences and timing relationships of the transmissid polling of telesignals and
telemeasures. This uses case-based reasoning to buildagebofrithe different event courses
and compare them with the sequences currently in progféss.system operates on the
sequences and timing information of the telesignals aatheglsures that are sent through the
cyber-infrastructure and not on the electricity measungsrtbat are transmitted and so has no
notion of correctness of the data.

We have also carried out some preliminary work on anodhetigction in electricity data using



some of the methods that have been developed within otbas §2]. Using data from a
simple six bus network we tested the ability of the mygtachnique [13] and invariant
induction [4] to build up a model of the electricity data datkct errors in it. In this simple set
up the n-gram method identified 98 % of the corrupt dataveieh a 1% false positive rate and
the invariant induction identified approximately 85% of thewor data with almost no false
positives. Since the true and false positives of thesentetiods were not coincident, we
carried out some unpublished experiments, which combined thmutofrom the two
anomaly-detecting techniques using a Bayesian network. Sitistantially improved the
overall performance.

4. Experimentsand Discussion

To evaluate our methodology, we generated a year’s worthrfah@and corrupted electricity
data on a test bed which emulates the cyber infrastruofuaa electricity network in some
detail. This was based on the test network developed bisTh&8afeguard project [14], but
with a number of extensions and modifications. The QNtdit bed consists of a simulation of
the physical electricity network, software that corrugtd filters electricity data, an emulation
of a SCADA system, an emulation of the state estomagbrocess at the control centre and a
simulated operator, which monitors the state estimatinod applies manoeuvres to the
simulated physical network. For the state estimation laad flow calculations we used
e-Agora (Advanced Grid Observation Reliable Algorithmsyl ahe IEEE RTS 96 24-Bus
network model [15]. Five different types of corruption weppleed to the electricity data.
These reflect the fact that electricity measuremeaishe altered by random noise, attacks,
software bugs, meter failures, electromagnetic interéeramd transmission errors.

1) Constant bias with normally distributed deviations. This added a constant bias to
the telemeasure values and a bias error sampled fronmeimdiet normal distributions
with zero mean. The corrupted valfeof the telesignaK is computed according to
equation (1), wher&y,1 is a standard random value followindNéD,1) distribution
and sigma % is standard deviation of the bias errorB).(

X'=(X+B)*E o =(X+B)* (Eyoy *9)+) (1)

N (1,82

2) Loss of decimal point (Mantissa). This simulates the situation in which an analogue
value loses information about the position of the decimaitp®he corrupted value of
the telemeasure is calculated by ‘taking out’ the decpuatt.

3) Sign switch. This type of corruption is used to simulate the situmin which an
analogue telemeasure changes its sign.

4) Fixed at fixed value. The value of a telemeasure is ‘frozen’ for one weesteiad of
changing along with the rest of the electricity datasTaiuld result from a software
bug or meter failure.

5) Fixed at random value. The value of a telemeasure is replaced by a randome,val
which is held constant for a week. This could resolnfa software bug, meter failure



or a deliberate attempt to corrupt the system.

This data generated by QMUL electricity test bed waesl ts train and test the invariant and
the artificial ant anomaly detectors; both individually aviidh their output integrated using the
Bayesian network. This data has also been made avadabie for the benefit of other
researchers [16].

4.2 Results of the Range Checker
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Figure 2 ROC curve of Range Checker on five types of attack cormgptio

From the ROC curve, it can be seen that the Range Chedi@od for Mantissa, Sign Switch
and Fixed to Random Value types of corruption, which shbmasit is capable of detecting
obvious abrupt changes. The Range Checker does not performllasnw&ign Switch
corruption as for the Mantissa corruption because when,smeall zero values are corrupted
by a sign switch, the changes are too subtle to be ddtbgtthe Range Checker.

The Range Checker does not perform well on Bias corruptiorubedae bias and sigma
values (5 and 0.15 respectively) do not lift the corrupt readfiag enough above the
background noise to be detected by a simple range checRaFye Checker performs poorly
on Fixed to Previous Value corruption because fixed prewvialues are still within the learnt
ranges, even though they are inconsistent with the réisé @lectricity data.



4.3 Results of the Linear Invariant Checker
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Figure 3 ROC curve of the Linear Invariant Checker on five §yp&attack corruptions

The ROC curve of the Linear Invariant Checker shows reddemperformance on all the types
of corruption. The limitation of this technique is thaielar relationships only hold on the real
power readings at either end of the lines and so it cdi@osed to detect errors in the other
readings. It is also unable to identify which of the mwver readings is causing the linear

relationship to fail.

4.4 Results of the Bus-zero-sum Checker
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Figure 4 ROC curve of the Bus-zero-sum Checker on five typestadlatorruptions

Like the Range Checker, the Bus-zero-sum Checker did not waltlagainst sigma and bias
corruption because the changes introduced by these quitéatbeebackground noise and so

they can only be picked when the threshold

is extremety, ste. the checker is very sensitive,

which caused a high false positive rate. The Bus-zero&heuaker had a poor performance on



the Fixed to Previous value corruption, probably becauséstuck” power readings are still
close to their actual value.

4.5 Results of Ant Clustering Anomaly Detection

g 071 Py
‘8 | - N
8 064 Ay
i 1 s s
rd 4 .
o 0.5 - Ry
:‘% 1 - - L’ ',/'
o 0.4+ L7
o E s .7 .
$ 0.3+ /7 s Mantissa
g AR - - - Sign
02 L7 e Bias
1 7 —-—- FixedPrevious
019 7 .7 ----- FixedRandom
4 7.~
e
o¥+—4—-+—rr—r—y-"T"""T"T"T"
00 01 02 03 04 05 06 07 08 09 10

False Positive Fraction

Figure 5 ROC curve of Ant Clustering Anomaly Detection

The results for Fixed Previous corruption showed true igesitetection to be consistently
above 97% for the ant clustering. This is an indicatiohef&arly promise of ant clustering for
electricity specific anomaly detection. Although mantissauption detection is lower than all
the other forms of anomaly detection tested, since astering is intended to complement and
not replace other forms of anomaly detection this cowdabcepted but is likely to be
improved. Sign switch corruption detection is also lowen tigpected given the obviousness
of the corruption. The detection rates for Mantissa agd ®ay be a result of the normalising
that the ants apply to the data, which does not toléreg@richanges. We are working on a way
for ants to better recognise big discrepancies betweanpdaits while retaining normalising
tendencies.

The advantage of Ant Clustering is that it is able tcpss diverse types of data in the same
way. However, the distance function possibly needs tonbee electricity data specific to
improve the detection of more subtle corruption such as Biagptmn. At the same time it is
important to retain the incremental features of the astthey are able to adapt the normal
model in accordance with changes in the state of theieigctretwork through the seasons.



4.6 Results of Bayesian Network Reasoning
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Figure 6 ROC curve of Bayesian networking reasoning with the R&tgecker, the Linear Invariant
Checker and the Bus- zero-sum Checker

Although these results look significantly worse in someeaeispthan those for the zero sum
and linear invariant, these results are for the ideatifon of corruptions in individual power
readings, whereas the linear invariant induction resulterlgefor the detection of errors in
pairs of readings, the ant results are for a collectforadings and the zero sum results are for
the detection of errors in all of the readings on a bus.mb#ns that it is the comparison with
the range checker that is the most important, which isttheother methodology to work on
all of the readings. The most obvious gains from using tiye8ian network are that false
positive rate has decreased and the true positive ratdefecting Fixed to Previous Value
corruption has greatly improved. The Range Checker usedalinbeo this type of corruption
but with the help from the other two checkers and Bayesian rietthe true positive rate has
substantially increased. There has also been a signifiroarovement in the true positive rate
for the Bias and Sigma corruption.

5. Conclusion

This paper has outlined some of the contemporary theéte electricity cyber infrastructure
and investigated two novel approaches to anomaly detectiohectnicity data. One uses
underlying physical knowledge to express and capture invariants dathend the other uses
artificial ant clustering to capture relationships betwelements that are not covered by the
invariants and which are more subject to change as thensysonfiguration changes. A
Bayesian network has been used to integrate the outputtffesm three anomaly detectors and
results in less false positives and significantly improdetection rates for some of the
corruption types.
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