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1. Introduction 

Large Complex Critical Infrastructures (LCCIs) 
play a key role in modern life, providing services 
such as telecommunications, electricity, gas and 
water within and between countries. In recent years, 
far-reaching changes has been made on these 
infrastructures such as increased dependence on IP 
networks, increased use of commercial off the shelf 
software such as Windows, increased import and 
export of electrical power and increased use of 
renewable energy supplies. These infrastructures are 
now highly interconnected and interdependent. This 
has made them more vulnerable to attacks, failures 
and accidents. Now a major security incident also has 
the potential to affect the management network of 
critical infrastructures, potentially disabling them so 
that the operators lose control of the network.  

A second consequence of this market 
orientation is the increased interconnectivity between 
the electricity management networks and other 
networks, most problematically between the 
corporate network and the control centre network. 
The dangers of this standardization and 
interconnection became apparent in the recent Ohio 
nuclear incident when the Slammer worm copied 
itself across from the corporate network into the plant 
network and disabled a safety monitoring system for 
nearly five hours, forcing the operators to switch to 
an analogue backup. In a separate incident the 
propagation of Slammer blocked SCADA traffic and 
impeded the ability of operators to monitor and 
control the electricity system. The Welchia (or Nachi) 
worm even infected check-in system of Air Canada 
and the US Navy and Marine Corps computers. [1] 

  Safeguard is a system that aims to enhance the 
dependability and survivability of LCCIs by 
protecting it against threats such as worms within the 
control system [2]. At present the availability and 
integrity of critical infrastructures are usually mainly 
monitored and maintained by human operators. 
Intrusion detection software has already been 
deployed in many LCCIs to help human operators 
monitor the system. However currently these 
software generate too many false positive and false 
negative alerts. Human operators are often 
overwhelmed when bursts of alerts arrive or misled 
by the wrong alert reports. More seriously, cascading 
alerts and failures can be aggravated when the 

operator cannot make decisions and act promptly. 
Safeguard uses agents to monitor and protect LCCIs 
by improving the capabilities of the automatic control 
functions and also helping human operators to make 
the right decisions and the right time. There are 
different kinds of agents. Some are used to detect 
anomalies within the system; others used to wrap 
existing software so that they can interact with the 
other agents; others to correlate the information from 
many agents into a diagnosis (or identification of the 
state of the system) and initiate automatic responses 
through action agents and actuators. Correlation is an 
effective solution that combines distributed detection 
and response with integration of critical information 
from many sources. In Safeguard, the objective of the 
correlation agent is to make sense of diverse pieces 
of information and perform timely action. It 
correlates alerts in real-time from multiple 
heterogeneous detection systems.  

This paper will describe the ability of Safeguard 
to detect and respond to the impact of worms in the 
electricity control centre LAN. It will start with a 
brief review of the electricity cyber infrastructure. 
Then a review of the main agents in the Safeguard 
system is given. Then an outline of the worm 
emulation that we built to test worm propagation 
under controlled conditions is given. Finally the 
paper concludes with some experimental results. 
Although this paper focuses on the electricity control 
centre the same methodology applies to protecting 
the control networks of other critical infrastructures. 

2. Electricity Cyber Infrastructure 

The electricity cyber layer contains a number of 
control centres running workstations, energy 
management software (EMS) and databases over a 
local area network. These control centres interact 
with the Supervisory Control and Data Acquisition 
(SCADA) system that consists of a software interface 
and specialized hardware units (RTUs), which 
monitor sensors and interface with breakers and 
transformers (see figure 1). The RTUs are connected 
with the control centre via a wide area network. 

Worms can affect both but this paper will look 
at the impact of worms on the electricity data in the 
electricity control centre. 



 

 

 

Figure 1. Electricity cyber-infrastructure 
 
3. Safeguard Agent System 

3.1 Overview 

The Safeguard agent system is implemented as 
a hierarchically layered agent system [10]. It 
combines distributed detection and distributed 
response with integration of critical information from 
many sources. The Safeguard agent system has 
hybrid detector agents that monitor the network, 
operators, system components (machines etc) and 
data passed around the system and system 
malfunction detectors within an infrastructure in 
order to assess the state of the system and determine 
if it contains erroneous data or is under attack. 
Problems within the system, such as anomalous data 
or file integrity violations, will be identified. This 
information can be either passed to the operator or 
automatically acted upon, in order to prevent or limit 
inappropriate behaviour. The most important agents 
will now be covered in more detail. 

The architecture of the agent system monitoring 
the system of figure 1 is given in figure 2. Different 
hybrid detector agents are positioned in the system 
based on the type of the activity they are monitoring. 
Information from these is passed on to the correlation 
agent, which makes an assessment of the state of the 
system components. If there is a problem, the 
correlation agent may use the actuators to take action, 
if there is time with the authorisation of the 
administrator operating through the man machine 
interface agent, otherwise if a time-critical response 
is required as in the case of a worm attack, then 
correlation agent may proceed automatically. 

 
Figure 2. The agent architecture 

 

There is not space to cover full Safeguard 
architecture in detail. This can be found in [13]. This 
paper will only give a brief description of the agents 
that are involved in the protection of the electricity 
control centre and were used to protect against worm 
attacks.  

3.2 Hybrid Detector Agents 

The Hybrid detector agents (HDAs) are 
effectively sensors that are used to gather information 
about diverse aspects of the system. Typically, their 
role does not exceed passive monitoring, although 
some may perform certain actions on the managed 
system, but only if explicitly permitted by the action 
agent. HDAs combine known information with a 
dynamic model of the systems normal behaviour. 
Because many of the HDAs in Safeguard are based 
on constructing different models of normality or 
defining invariants or approximate invariants in the 
system, they are capable of detecting anomalies that 
have not occurred before.  

A large number of different types of dedicated 
agents are placed in the system to monitor many 
aspects of system activity, such as electricity data, 
network traffic and so on. An important one from 
point of view of this paper is the network traffic 
anomaly detector, which monitors the average level 
of network traffic entering and exiting the machine.   

3.3 Wrapper Agents 

The Wrapper Agents are attached to the existing 
intrusion detection systems that gather information 
about the system and possible attacks on the system. 
Wrapper agents simply allow information from 
existing diagnostic and IDS components to be 
integrated within the Safeguard system. Information 
from wrapper agents is sent to the correlation agents. 
An example is file integrity checker wrapper agent, 
which monitors integrity violations on critical system 
files. To detect known worms we wrap Prelude, an 
open source IDS which uses the SNORT signatures 
to detect known attacks on the system [14]. To detect 
unknown worms it is assumed that worms are likely 
to make changes to system files in order to ensure 
that they start up. So also wrapped is AFICK, a file 
integrity checker [15]. 

3.4 Workflow Correlation Agents 

Workflow correlation agents are used to 
integrate information from the IDS wrappers and the 
HDAs into a diagnosis about what is happening on 
the system. The Workflow Correlation agents 
(WCAs) contain an embedded workflow 
management system named Bossa [8]. Predefined 
workflow models for the managed network are 
loaded to the workflow management system.  
Transitions of these workflow models are associated 
with predefined Bayesian network models. Workflow 
correlation agents are responsible for integrating 
information from the different HDAs or wrapper 
agents and reasoning about the state of the network 



 

 

system that is being protected and the behaviour of 
operators. Some of these transitions are used to 
model actions or to communicate with a separate 
action actuator agent. In this way the correlation and 
action actuator agents work together to provide a 
quick response that rectifies problems as they arise. 
An example of available responses includes killing 
worm processes when a worm is reported by the 
WCAs to stop the propagation of the worm in the 
network. A fuller description of the technology inside 
this agent is given in Section 4.  

3.5 Actuators 

Actuators are used to carry out actions on the 
network. In the context of the worm example, if the 
worm was known then the process name that it 
created was killed. Otherwise the most recently 
created processes were killed. This is not an optimal 
solution, but it is arguably better to have some 
incorrect processes occasionally killed accidentally, 
rather than have the whole control network paralysed 
by a worm. 

3.6 Man Machine Interface Agent 

The Man Machine Interface (MMI) agent is 
used to manage the Safeguard agents and define the 
scope of their legitimate activity.  

4. Bayesian Workflow Correlation 

4.1 Overview 

Correlation uses workflows that are augmented 
by Bayesian networks. These combine probabilistic 
reasoning in order to make decisions at points in time 
with the management of the temporal evolution of 
events and resource checking of workflows.  

4.2 Workflows 

Workflows are defined by the Workflow 
Management Coalition as follows: The automation of 
a business process, in whole or part, during which 
documents, information or tasks are passed from one 
participant to another for action, according to a set of 
procedural rules [3]. They have been used in business 
for a number of years to model the flow of 
information within an organisation and the operations 
carried out on that information. These applications 
are oriented towards managing a complex sequence 
of activities. W.M.P. van der Aalst [4] has described 
Petri Nets as a tool for modelling workflows and 
describes modelling with sequential activities, 
parallel activities, AND splits, OR splits (implicit and 
explicit), different joins and iteration. van der Aalst’s 
paper also describes standard ways that transitions in 
the workflow are triggered: Automatic, User, 
Message, and Time. In our research, we follow this 
terminology and notation. 

4.3 Workflow Management System 

Workflow management systems are used to 
define, manage and execute workflows using 
software whose order of execution is driven by a 

computer representation of the workflow logic [5]. 
There are many commercial and non-commercial 
workflow management tools available such as Cosa 
[6] and OpenWFE [7]. Each application provides 
different functionalities and serves different users. In 
our research we chose the Bossa Workflow System 
as our workflow management system because it has 
the following advantages:  

1) Bossa uses augmented Petri Nets to 
provide an intuitive way of modelling 
workflows and a way to verify workflow 
correctness. Extended Petri Nets even 
allow users to model time and include a 
hierarchy of workflow models.  

2) Bossa is designed to be embedded and it 
is easy to define and dynamically load 
workflows in Bossa. 

3) Bossa is written in Java, which can be 
platform independent. Also it is 
relatively easy to integrate Bossa with 
other Java code linked to workflow 
functions 

4) Bossa is lightweight and fast. One reason 
is because tracking of position in a 
workflow is implemented without using 
separate threads for each workflow. This 
allows the agent to deal with a large 
number of different workflows relating 
to different event sequences in the 
monitored system.  

4.4 Constructing Workflows 

Basic Petri Net modelled workflows for Bossa 
workflow management system have the following 
elements: Places, Transitions, and weighted Arcs. 
Workflows in our system can only be started at one 
point. This point should be marked by placing a 
single token at that point. Four different types of 
transition can be used to construct a workflow. The 
transition type is set using the first few letters of its 
name. 

1) Bayesian controlled transitions. These 
transitions are fired when the 
probability of the node in the Bayesian 
network identified as corresponding to 
the transition exceeds the prescribed 
threshold.  

2) Message sending transitions. When a 
workflow reaches a message sending 
transition a message is sent to another 
agent. For example, a message sending 
transition can send a message to the 
MMI agent with the subject 
WorkflowStarted. The attributes of the 
workflow will also be sent to the 
receiving agent when the transition fires. 
It is also possible for the agent to send a 
message to itself. This feature can be 



 

 

used to start a workflow or set an 
observable in another workflow.  

3) Timer transitions. A timer transition 
either sets a timer or checks to see if the 
timer has expired. Timer transition can 
be used to execute periodic tasks.  

4) Ordinary transitions. An ordinary 
transition is used to route the workflow 
based on static or dynamic attributes. 
These transitions are always fireable 
when they are reached by the workflow. 

A simple Petri Net modelled workflow using 
our interface to the Bossa workflow engine is shown 
as figure 3. Transition T1 has an explicit OR-split, 
meaning that only one of the paths is traversed. 
Variable a is global to the particular workflow but 
invisible to other workflows. When transition T1 is 
fired, according the evaluation results of the post-
conditions of T1, the token in place P0 will be 
transferred to P1 or P2.  

P3 

P1 

 

T2 

T3 

a>0.5 

a<=0.5 

T1 

P0 

P2 

 

Figure 3. Simple Petri Net modelled workflow 

4.5 Constructing Bayesian Networks 

Bayesian networks are constructed in an XML 
format using the graphical capabilities of the 
JavaBayes software [9]. The EBayes software [11] is 
embedded in the correlation agent and this is used 
when updating the beliefs of nodes in the Bayesian 
networks that are linked to transitions in the 
workflow. A Bayesian network provides a link 
between incoming messages from anomaly detectors 
and a transition in the workflow. Each Bayesian 
network contains one or more observable nodes 
which corresponding to incoming messages. 
Observables are linked by the Bayesian network to 
nodes associated with workflow transitions. The 
belief in the Bayesian network node linked with this 
associated Petri net transition node is queried to see if 
the transition should fire at runtime. Deterministic 
relationships between observables and transitions are 
handled as a degenerate case where the probabilities 
are 0 and 1. Observable nodes do not depend upon 
any other Bayesian network nodes as they are set 
directly by other agents of Safeguard system.  

4.6 Bayesian Workflow Correlation 

In our research we are applying workflows to 
model and monitor both normal and abnormal flow 
of activities within an organisation. It is understood 
that many of the workflows are not already in place. 
Messages from the different anomaly detectors are 
pushed to the correlation agent. Each message has a 

value of true or false, which will be used to set 
observable nodes in the Bayesian networks in the 
appropriate workflows. (This could be generalized so 
that probabilities could be passed, but it is not so in 
the current implementation.) When repeated 
messages are sent the latest incoming message will 
update the corresponding observable node to it new 
value. These messages are stored by the correlation 
agent so that it can retrieve other attributes of the 
message when a transition fires. By doing so we are 
able to correlate different reports and alerts from 
different intrusion detection agents at different times 
and stages of evolution of an attack. 

There can be hundreds of predefined workflow 
types existing in a single correlation agent and for 
each workflow type there could be many instances of 
this workflow running simultaneously. The Bossa 
workflow management system handles the 
concurrency and parallel execution.  

 
Figure 4. Workflow for detecting and 

responding to worms. The Unknown Worm Detected   
transition is circled. 

 

 
Figure 5. Bayesian network that controls the 

transition UnknownWormDetected  

 

This modular reasoning process will be 
made clearer through an example. Suppose that a 
worm enters the electricity control centre’s local area 
network and starts to scan and copy itself onto other 
machines. The Safeguard agents will detect some of 
the consequences – network congestion, scanning, 
file modifications and so on - and pass this 
information on to the correlation agent. When the 
correlation agent receives this information it will use 
it to set the appropriate nodes in the Bayesian 
networks, here shown in figure 5. The structure of 
such a network is in general a directed acyclic graph, 
though the one shown is simply a tree.   



 

 

Figure 4 shows a simplified extract from a 
Bayesian workflow that is used to identify and 
respond to worms on the system. The clear squares 
are the Petri net transitions, the clear circles are Petri 
net places. If the Bayesian reasoning in figure 5 
concludes that there is a good probability of that 
Unknown Worm Detected is true, then the correlation 
agent activates this workflow and fires the circled 
transition in figure 4.  This workflow then kills some 
recent processes, alerts a human operator about the 
problem and also sets up a time delay so that it can 
wait before checking if the worm is still propagating 
on the system using another Bayesian network. 

5 Experiments 

5.1 Overview 

In this scenario we wanted to test the ability of 
Safeguard to handle a scenario in which a worm 
enters the electricity control centres local area 
network and starts to scan and copy itself onto other 
machines. The Safeguard hybrid detector agents and 
wrapper agents detect some of the consequences, 
such as network congestion, scanning, and file 
modifications. This information is passed to the 
correlation agent. We wanted to test both known 
worms where there is an IDS signature and unknown 
worms. 

5.2 Worm emulation 

One way of testing the worm scenario would 
have been to capture a number of worms, such as 
Code Red, Slammer and so on using a honey pot, and 
then release them within our test network. However, 
there are a number of problems with this way of 
testing: 

Real worms exploit very specific vulnerabilities 
(patches, versions etc.). This makes running a 
number of different worms on the same machines 
potentially very complicated. 

Real worms can do considerable damage to the 
machines that they are copying themselves onto. 
They can also be difficult to clean up after each test, 
especially if they target the anti virus software. 

Depending on their scanning algorithm, real 
worms can propagate very slowly on their local 
network, even if they propagate rapidly on a global 
scale.  This makes studying their impact within a 
network difficult. 

The properties of real worms (packet size, 
number of threads, port, and so on) cannot be 
changed, which makes it hard to come up with 
general conclusions about worm behaviour. 

To avoid these problems it was decided to 
create a worm emulation to test this scenario. This 
was created in Java to enable it to run on any 
machine. This emulation consisted of a malicious 
process that scanned machines or sent a replication 
packet or both and also a vulnerable process that 
listened on a specific port for the infection packet 

and started up a new malicious process when the 
replication packet was received. 

Since the exact properties of each worm are 
different, the worm emulation software was not 
written to fully emulate any of the known worms. 
Instead it was decided to create general worm-like 
processes that can imitate the properties of a 
particular worm family. The distinction between 
worm families was drawn based on type of protocols 
used, replication strategies, level of network 
congestion, and CPU time consumed. The two worm 
families that were chosen for this test scenario were 
Code Red and Slammer. Code Red propagates using 
ICMP to detect machines and then TCP to propagate 
between machines. This method of propagation 
necessitates a large number of threads.  Slammer, on 
the other hand, simply generates a single UDP packet 
and sends this to a randomly chosen host. Dependant 
on the protocol used the malicious code can be either 
embedded in the UDP datagram or TCP message. 
The properties of these two worm families are 
summarised in the table below. 
Worm 
Family 

Protocol Number of 
threads 

Impact 

Code Red  ICMP 
(machine detection) 
TCP (propagation) 

Large (99) CPU & 
Network 

Slammer UDP Small (1) Network 

Table 1 Properties of the two worm families chosen 

The Worm Emulation Software behaves as an 
infected machine and for the Code Red family 
emulation it uses the ICMP protocol to scan hosts on 
the local network as well on the global network for 
valid IP addresses, i.e. ones that actually exists. If it 
does not receive a reply to the ICMP message the 
address does not exist. The worm then tries to 
replicate itself on every valid IP address.  

More specifically, the worm emulation software 
has between 1 and 99 threads running, which are 
specifiable as a command line configurable argument, 
each one sending ICMP type one requests (PING) to 
a randomly generated IP address and listening for a 
reply. The more threads the more virulent the worm. 
A successful reply means the machine exists, 
whereas an ICMP type three message (destination is 
unreachable) means that this address is unavailable. 
The global network scan uses randomly generated IP 
addresses, whereas the local network scan takes into 
consideration the address of the host machine and the 
subnet mask. In case of a valid IP address, the Code 
Red emulation tries to replicate on the other host 
using the TCP protocol. Since only one out of eight 
ICMP requests corresponds to a valid IP address (this 
is due to the probability of generating an IP address 
correctly in the procedure used) a machine infected 
with this type of malicious code can be detected by 
the number on ICMP type three messages sent to it. 

To replicate the worm needs to find 
vulnerabilities, e.g a service with known 



 

 

vulnerability running on an open port of the potential 
victim machine. After exploiting the vulnerability the 
emulation establishes a connection between the 
worm process and the vulnerable service process. It 
will then try to replicate itself by sending a 
replication message which is a sequence of one 
packet messages. One of these packets contains 
malicious code which initializes the replication 
procedure on the recipient machine. Embedded 
malicious code has a particular signature which is 
used by the intrusion detection system to identify the 
malicious activity on the network and take the 
appropriate actions. 

For the Slammer family emulation, the Worm 
Emulation Software uses UDP for its propagation 
and sends a single replication packet to a randomly 
chosen IP address. To control the propagation rate, 
the range from which this random IP address is set 
using a command line argument. 

The impact of the worm emulation upon the 
electricity network and the Safeguard response were 
measured by using Network Probe to monitor the 
total network traffic. The worm emulation was 
initially run without Safeguard and then with 
Safeguard so that the effectiveness of the Safeguard 
response could be evaluated. In the Safeguard tests, a 
String was included inside the worm and a signature 
written for Prelude to test the ability of Safeguard to 
respond to a known worm. Safeguard was also tested 
without Prelude to evaluate Safeguard’s ability to 
detect and respond to an unknown worm on the 
network. Two families of worm were emulated for 
test purposes, namely Code Red and Slammer.  

A set of workflows correspond to mechanisms 
to detect an unknown worm were constructed. The 
workflow shown in figure 4 is one of them. Linked 
workflows relate to monitoring patterns of behaviour 
of a suspected attacking host and another that is 
initialized for each suspected victim machine. These 
are initialized on the first indications and then they 
build up evidence of attacker or victim. All the 
workflows are within the correlation agent and run 
simultaneously.   

 

Experiment Worm family Number of 
threads 

Packet size 
(Kb) 

1 Code Red 26 & 20 65 & 30 

2 Code Red 20 65 & 30 

3 Code Red 20 65 & 45 

4 Slammer 50 65 

5 Unknown 
Code Red 

10 & 2 30 

6 Unknown 
Slammer 

50 65 

Table 2. Parameters for worm experiments 

 

6 Results 

The graphs below show the results of the tests 
of the worm scenario using the worm emulation 
software. The X axis represents time, with each cell 
corresponding to 30 seconds. The Y axis displays 
network throughput in Mbit/sec. In the graphs the 
normal electrical activity on the network appears as a 
regular jagged line just below the 2.0 Mbit/s level. 
Irregular activity above this level indicates the impact 
of the worm upon the network. The parameters of the 
worm emulation for each experiment are included 
below the graphs. 

6.1 Code Red Type Impact 

Experiment 1 without Safeguard 

 
Figure 6 Network traffic to the control centre 

As indicated in Table 2 the attacker worm with 
parameters shown starts and spreads to the victim. 
Here the worm emulation completely disrupts 
network activity causing the flow of electrical data to 
the control centre to fall to zero. 

Experiment 1 with Safeguard 

 
Figure 7 Network traffic to the control centre: 

Code Red and Safeguard 

The same dramatic impact on network traffic can be 
seen as in Experiment 1. However the automatic 
response of Safeguard manages to kill the worm and 
the flow of electricity data eventually resumes. 



 

 

Experiment 2 without Safeguard 

 
Figure 8 Network traffic to the control centre: Code 

Red and No Safeguard 

With these parameter settings the Code Red worm 
disrupts network activity and then continues to 
propagate, seriously disrupting network traffic. 

Experiment 2 with Safeguard 

 
Figure 9 Network traffic to the control centre: Code 

Red and Safeguard 

The worm is killed quite rapidly here without a major 
disruption of network traffic. 

Experiment 3 without Safeguard 

 
Figure 10 Network traffic to the control centre: 
Code Red and No Safeguard 

With these parameter settings the worm disrupts 
network activity and then continues to propagate, 
seriously disrupting network traffic. 

Experiment 3 with Safeguard 

 

Figure  10 Network traffic to the control centre: 
Code Red and Safeguard 

The worm is killed quite rapidly without a major 
disruption of network traffic. 

6.2 Slammer Type Impact 

Experiment 4 without Safeguard 

 
Figure 11 Network traffic to the control centre: 

Slammer and No Safeguard 

The impact of the Slammer worm with these 
parameters is serious, but does not completely 
eliminate the electricity traffic whose zigzag 
signature can be seen continuing on top of the 
Slammer traffic. Part of the reason for this is that 
Slammer only copied itself onto two machines in this 
experiment, which reduced the amount of network 
disruption. 

Experiment 4 with Safeguard 

 
Figure 12 Network traffic to the control centre: 

Slammer and Safeguard 

The rapid response of Safeguard prevents any serious 
disruption of network traffic. 

6.3 Unknown worm impact 

An unknown worm is in our case is simply a 
worm that cannot be detected by Prelude and so has 
to be detected only by the anomaly detectors. Such 
detection is less specific, only indicating a deviation 
from normality.  



 

 

Experiment 5 with Safeguard 

 
Figure 13 Network traffic to the control centre: 
unknown Code Red worm and Safeguard 

The surge of network activity and file integrity 
modifications led to the unknown Code Red family 
worm being rapidly detected and eliminated by 
Safeguard. 

Experiment 6 with Safeguard 

 
Figure 14 Network traffic to the control centre: 
unknown Slammer worm with Safeguard 

The Slammer traffic led to the rapid detection of 
the worm, but it took some time for the killing 
messages to get through so that the recent worm 
processes could be eliminated. 

7. Future Work 

The results presented are seen as early 
indicators of the capabilities of the system and we 
accept that there is a need for more comprehensive 
testing over a wider range of scenarios and 
parameters and investigation of the effects on agent 
traffic in virulent cases. Techniques to improve the 
performance of the system the case of unknown 
worms are being investigated. An obvious, but still 
important problem is that the response of Safeguard 
was often hampered by the network congestion 
caused by the worm. There is a need to have a 
dedicated network for Safeguard or some kind of 
dedicated bandwidth allocation for Safeguard traffic, 
e.g. routing with DiffServe or Zebra [16]. Again it is 
planned to look at this. 

During the project a considerable amount of 
effort was placed on devising anomaly detectors for 
electricity and telecommunication data. For example, 
sophisticated anomaly detection for network data 
building on the BIRCH algorithm [12] was tested in 
real network traffic, and a special technique based on 
invariants in electrical data was developed.  We plan 
to integrate these into the electricity test bed and 

evaluate the Safeguard system on large sets of data 
extracted from electricity network simulations. 

8. Conclusions 

This paper has concentrated on an aspect of our 
approach to correlation. By correlation is meant the 
synthesis of information from diverse kinds of 
anomaly detector and IDS and making sense of this 
information. Information is synthesized for patterns 
of attack that can extend over a period of time. The 
time events occur can matter and one of the strengths 
of the approach chosen is that this can be 
accommodated in the correlation process. For 
example, a scan in itself may not be significant, but 
in the context of a suspected kind of attack it can 
give supporting or contradictory evidence.  

The experiments reported here demonstrate that 
the worm emulation software has a significant impact 
on the system performance and if no appropriate 
measures are taken the network and individual 
machines can come to standstill. With Safeguard in 
place the worm activities can be detected and 
eliminated successfully. In all of our test cases the 
network was restored to its normal state. These 
results suggest that the Safeguard method can be an 
effective way of dealing with known and unknown 
worms in the network. However more tests will need 
to be performed to establish the parameters for this 
response in more detail.  

Whilst the experiments reported related to 
worms, workflows can be used to model a wide 
range of behaviour, ranging from monitoring the 
actions of repair staff (and so recognising and 
reacting to attacks from within) to detecting and 
managing load shedding.  
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