

Securing Critical Infrastructures, Grenoble, October 2004

SAFEGUARDING ELECTRICITY CYBER-
INFRASTRUCTURES AGAINST THE WORM THREAT

J. Bigham (*), D. A. O Gamez (+), Xuan Jin (*), Julian Rodaway (*), Chris Phillips (*) and
Leonid Titkov (*)

(*) Department of Electronic Engineering, Queen Mary, University of London, London, UK

(+) Department of Computer Science, University of Essex, Colchester, UK.

1. Introduction

Large Complex Critical Infrastructures (LCCIs)
play a key role in modern life, providing services
such as telecommunications, electricity, gas and
water within and between countries. In recent years,
far-reaching changes has been made on these
infrastructures such as increased dependence on IP
networks, increased use of commercial off the shelf
software such as Windows, increased import and
export of electrical power and increased use of
renewable energy supplies. These infrastructures are
now highly interconnected and interdependent. This
has made them more vulnerable to attacks, failures
and accidents. Now a major security incident also has
the potential to affect the management network of
critical infrastructures, potentially disabling them so
that the operators lose control of the network.

A second consequence of this market
orientation is the increased interconnectivity between
the electricity management networks and other
networks, most problematically between the
corporate network and the control centre network.
The dangers of this standardization and
interconnection became apparent in the recent Ohio
nuclear incident when the Slammer worm copied
itself across from the corporate network into the plant
network and disabled a safety monitoring system for
nearly five hours, forcing the operators to switch to
an analogue backup. In a separate incident the
propagation of Slammer blocked SCADA traffic and
impeded the ability of operators to monitor and
control the electricity system. The Welchia (or Nachi)
worm even infected check-in system of Air Canada
and the US Navy and Marine Corps computers. [1]

 Safeguard is a system that aims to enhance the
dependability and survivability of LCCIs by
protecting it against threats such as worms within the
control system [2]. At present the availability and
integrity of critical infrastructures are usually mainly
monitored and maintained by human operators.
Intrusion detection software has already been
deployed in many LCCIs to help human operators
monitor the system. However currently these
software generate too many false positive and false
negative alerts. Human operators are often
overwhelmed when bursts of alerts arrive or misled
by the wrong alert reports. More seriously, cascading
alerts and failures can be aggravated when the

operator cannot make decisions and act promptly.
Safeguard uses agents to monitor and protect LCCIs
by improving the capabilities of the automatic control
functions and also helping human operators to make
the right decisions and the right time. There are
different kinds of agents. Some are used to detect
anomalies within the system; others used to wrap
existing software so that they can interact with the
other agents; others to correlate the information from
many agents into a diagnosis (or identification of the
state of the system) and initiate automatic responses
through action agents and actuators. Correlation is an
effective solution that combines distributed detection
and response with integration of critical information
from many sources. In Safeguard, the objective of the
correlation agent is to make sense of diverse pieces
of information and perform timely action. It
correlates alerts in real-time from multiple
heterogeneous detection systems.

This paper will describe the ability of Safeguard
to detect and respond to the impact of worms in the
electricity control centre LAN. It will start with a
brief review of the electricity cyber infrastructure.
Then a review of the main agents in the Safeguard
system is given. Then an outline of the worm
emulation that we built to test worm propagation
under controlled conditions is given. Finally the
paper concludes with some experimental results.
Although this paper focuses on the electricity control
centre the same methodology applies to protecting
the control networks of other critical infrastructures.

2. Electricity Cyber Infrastructure

The electricity cyber layer contains a number of
control centres running workstations, energy
management software (EMS) and databases over a
local area network. These control centres interact
with the Supervisory Control and Data Acquisition
(SCADA) system that consists of a software interface
and specialized hardware units (RTUs), which
monitor sensors and interface with breakers and
transformers (see figure 1). The RTUs are connected
with the control centre via a wide area network.

Worms can affect both but this paper will look
at the impact of worms on the electricity data in the
electricity control centre.

Figure 1. Electricity cyber-infrastructure

3. Safeguard Agent System

3.1 Overview

The Safeguard agent system is implemented as
a hierarchically layered agent system [10]. It
combines distributed detection and distributed
response with integration of critical information from
many sources. The Safeguard agent system has
hybrid detector agents that monitor the network,
operators, system components (machines etc) and
data passed around the system and system
malfunction detectors within an infrastructure in
order to assess the state of the system and determine
if it contains erroneous data or is under attack.
Problems within the system, such as anomalous data
or file integrity violations, will be identified. This
information can be either passed to the operator or
automatically acted upon, in order to prevent or limit
inappropriate behaviour. The most important agents
will now be covered in more detail.

The architecture of the agent system monitoring
the system of figure 1 is given in figure 2. Different
hybrid detector agents are positioned in the system
based on the type of the activity they are monitoring.
Information from these is passed on to the correlation
agent, which makes an assessment of the state of the
system components. If there is a problem, the
correlation agent may use the actuators to take action,
if there is time with the authorisation of the
administrator operating through the man machine
interface agent, otherwise if a time-critical response
is required as in the case of a worm attack, then
correlation agent may proceed automatically.

Figure 2. The agent architecture

There is not space to cover full Safeguard
architecture in detail. This can be found in [13]. This
paper will only give a brief description of the agents
that are involved in the protection of the electricity
control centre and were used to protect against worm
attacks.

3.2 Hybrid Detector Agents

The Hybrid detector agents (HDAs) are
effectively sensors that are used to gather information
about diverse aspects of the system. Typically, their
role does not exceed passive monitoring, although
some may perform certain actions on the managed
system, but only if explicitly permitted by the action
agent. HDAs combine known information with a
dynamic model of the systems normal behaviour.
Because many of the HDAs in Safeguard are based
on constructing different models of normality or
defining invariants or approximate invariants in the
system, they are capable of detecting anomalies that
have not occurred before.

A large number of different types of dedicated
agents are placed in the system to monitor many
aspects of system activity, such as electricity data,
network traffic and so on. An important one from
point of view of this paper is the network traffic
anomaly detector, which monitors the average level
of network traffic entering and exiting the machine.

3.3 Wrapper Agents

The Wrapper Agents are attached to the existing
intrusion detection systems that gather information
about the system and possible attacks on the system.
Wrapper agents simply allow information from
existing diagnostic and IDS components to be
integrated within the Safeguard system. Information
from wrapper agents is sent to the correlation agents.
An example is file integrity checker wrapper agent,
which monitors integrity violations on critical system
files. To detect known worms we wrap Prelude, an
open source IDS which uses the SNORT signatures
to detect known attacks on the system [14]. To detect
unknown worms it is assumed that worms are likely
to make changes to system files in order to ensure
that they start up. So also wrapped is AFICK, a file
integrity checker [15].

3.4 Workflow Correlation Agents

Workflow correlation agents are used to
integrate information from the IDS wrappers and the
HDAs into a diagnosis about what is happening on
the system. The Workflow Correlation agents
(WCAs) contain an embedded workflow
management system named Bossa [8]. Predefined
workflow models for the managed network are
loaded to the workflow management system.
Transitions of these workflow models are associated
with predefined Bayesian network models. Workflow
correlation agents are responsible for integrating
information from the different HDAs or wrapper
agents and reasoning about the state of the network

system that is being protected and the behaviour of
operators. Some of these transitions are used to
model actions or to communicate with a separate
action actuator agent. In this way the correlation and
action actuator agents work together to provide a
quick response that rectifies problems as they arise.
An example of available responses includes killing
worm processes when a worm is reported by the
WCAs to stop the propagation of the worm in the
network. A fuller description of the technology inside
this agent is given in Section 4.

3.5 Actuators

Actuators are used to carry out actions on the
network. In the context of the worm example, if the
worm was known then the process name that it
created was killed. Otherwise the most recently
created processes were killed. This is not an optimal
solution, but it is arguably better to have some
incorrect processes occasionally killed accidentally,
rather than have the whole control network paralysed
by a worm.

3.6 Man Machine Interface Agent

The Man Machine Interface (MMI) agent is
used to manage the Safeguard agents and define the
scope of their legitimate activity.

4. Bayesian Workflow Correlation

4.1 Overview

Correlation uses workflows that are augmented
by Bayesian networks. These combine probabilistic
reasoning in order to make decisions at points in time
with the management of the temporal evolution of
events and resource checking of workflows.

4.2 Workflows

Workflows are defined by the Workflow
Management Coalition as follows: The automation of
a business process, in whole or part, during which
documents, information or tasks are passed from one
participant to another for action, according to a set of
procedural rules [3]. They have been used in business
for a number of years to model the flow of
information within an organisation and the operations
carried out on that information. These applications
are oriented towards managing a complex sequence
of activities. W.M.P. van der Aalst [4] has described
Petri Nets as a tool for modelling workflows and
describes modelling with sequential activities,
parallel activities, AND splits, OR splits (implicit and
explicit), different joins and iteration. van der Aalst’s
paper also describes standard ways that transitions in
the workflow are triggered: Automatic, User,
Message, and Time. In our research, we follow this
terminology and notation.

4.3 Workflow Management System

Workflow management systems are used to
define, manage and execute workflows using
software whose order of execution is driven by a

computer representation of the workflow logic [5].
There are many commercial and non-commercial
workflow management tools available such as Cosa
[6] and OpenWFE [7]. Each application provides
different functionalities and serves different users. In
our research we chose the Bossa Workflow System
as our workflow management system because it has
the following advantages:

1) Bossa uses augmented Petri Nets to
provide an intuitive way of modelling
workflows and a way to verify workflow
correctness. Extended Petri Nets even
allow users to model time and include a
hierarchy of workflow models.

2) Bossa is designed to be embedded and it
is easy to define and dynamically load
workflows in Bossa.

3) Bossa is written in Java, which can be
platform independent. Also it is
relatively easy to integrate Bossa with
other Java code linked to workflow
functions

4) Bossa is lightweight and fast. One reason
is because tracking of position in a
workflow is implemented without using
separate threads for each workflow. This
allows the agent to deal with a large
number of different workflows relating
to different event sequences in the
monitored system.

4.4 Constructing Workflows

Basic Petri Net modelled workflows for Bossa
workflow management system have the following
elements: Places, Transitions, and weighted Arcs.
Workflows in our system can only be started at one
point. This point should be marked by placing a
single token at that point. Four different types of
transition can be used to construct a workflow. The
transition type is set using the first few letters of its
name.

1) Bayesian controlled transitions. These
transitions are fired when the
probability of the node in the Bayesian
network identified as corresponding to
the transition exceeds the prescribed
threshold.

2) Message sending transitions. When a
workflow reaches a message sending
transition a message is sent to another
agent. For example, a message sending
transition can send a message to the
MMI agent with the subject
WorkflowStarted. The attributes of the
workflow will also be sent to the
receiving agent when the transition fires.
It is also possible for the agent to send a
message to itself. This feature can be

used to start a workflow or set an
observable in another workflow.

3) Timer transitions. A timer transition
either sets a timer or checks to see if the
timer has expired. Timer transition can
be used to execute periodic tasks.

4) Ordinary transitions. An ordinary
transition is used to route the workflow
based on static or dynamic attributes.
These transitions are always fireable
when they are reached by the workflow.

A simple Petri Net modelled workflow using
our interface to the Bossa workflow engine is shown
as figure 3. Transition T1 has an explicit OR-split,
meaning that only one of the paths is traversed.
Variable a is global to the particular workflow but
invisible to other workflows. When transition T1 is
fired, according the evaluation results of the post-
conditions of T1, the token in place P0 will be
transferred to P1 or P2.

P3

P1

T2

T3

a>0.5

a<=0.5

T1

P0

P2

Figure 3. Simple Petri Net modelled workflow

4.5 Constructing Bayesian Networks

Bayesian networks are constructed in an XML
format using the graphical capabilities of the
JavaBayes software [9]. The EBayes software [11] is
embedded in the correlation agent and this is used
when updating the beliefs of nodes in the Bayesian
networks that are linked to transitions in the
workflow. A Bayesian network provides a link
between incoming messages from anomaly detectors
and a transition in the workflow. Each Bayesian
network contains one or more observable nodes
which corresponding to incoming messages.
Observables are linked by the Bayesian network to
nodes associated with workflow transitions. The
belief in the Bayesian network node linked with this
associated Petri net transition node is queried to see if
the transition should fire at runtime. Deterministic
relationships between observables and transitions are
handled as a degenerate case where the probabilities
are 0 and 1. Observable nodes do not depend upon
any other Bayesian network nodes as they are set
directly by other agents of Safeguard system.

4.6 Bayesian Workflow Correlation

In our research we are applying workflows to
model and monitor both normal and abnormal flow
of activities within an organisation. It is understood
that many of the workflows are not already in place.
Messages from the different anomaly detectors are
pushed to the correlation agent. Each message has a

value of true or false, which will be used to set
observable nodes in the Bayesian networks in the
appropriate workflows. (This could be generalized so
that probabilities could be passed, but it is not so in
the current implementation.) When repeated
messages are sent the latest incoming message will
update the corresponding observable node to it new
value. These messages are stored by the correlation
agent so that it can retrieve other attributes of the
message when a transition fires. By doing so we are
able to correlate different reports and alerts from
different intrusion detection agents at different times
and stages of evolution of an attack.

There can be hundreds of predefined workflow
types existing in a single correlation agent and for
each workflow type there could be many instances of
this workflow running simultaneously. The Bossa
workflow management system handles the
concurrency and parallel execution.

Figure 4. Workflow for detecting and

responding to worms. The Unknown Worm Detected
transition is circled.

Figure 5. Bayesian network that controls the

transition UnknownWormDetected

This modular reasoning process will be
made clearer through an example. Suppose that a
worm enters the electricity control centre’s local area
network and starts to scan and copy itself onto other
machines. The Safeguard agents will detect some of
the consequences – network congestion, scanning,
file modifications and so on - and pass this
information on to the correlation agent. When the
correlation agent receives this information it will use
it to set the appropriate nodes in the Bayesian
networks, here shown in figure 5. The structure of
such a network is in general a directed acyclic graph,
though the one shown is simply a tree.

Figure 4 shows a simplified extract from a
Bayesian workflow that is used to identify and
respond to worms on the system. The clear squares
are the Petri net transitions, the clear circles are Petri
net places. If the Bayesian reasoning in figure 5
concludes that there is a good probability of that
Unknown Worm Detected is true, then the correlation
agent activates this workflow and fires the circled
transition in figure 4. This workflow then kills some
recent processes, alerts a human operator about the
problem and also sets up a time delay so that it can
wait before checking if the worm is still propagating
on the system using another Bayesian network.

5 Experiments

5.1 Overview

In this scenario we wanted to test the ability of
Safeguard to handle a scenario in which a worm
enters the electricity control centres local area
network and starts to scan and copy itself onto other
machines. The Safeguard hybrid detector agents and
wrapper agents detect some of the consequences,
such as network congestion, scanning, and file
modifications. This information is passed to the
correlation agent. We wanted to test both known
worms where there is an IDS signature and unknown
worms.

5.2 Worm emulation

One way of testing the worm scenario would
have been to capture a number of worms, such as
Code Red, Slammer and so on using a honey pot, and
then release them within our test network. However,
there are a number of problems with this way of
testing:

Real worms exploit very specific vulnerabilities
(patches, versions etc.). This makes running a
number of different worms on the same machines
potentially very complicated.

Real worms can do considerable damage to the
machines that they are copying themselves onto.
They can also be difficult to clean up after each test,
especially if they target the anti virus software.

Depending on their scanning algorithm, real
worms can propagate very slowly on their local
network, even if they propagate rapidly on a global
scale. This makes studying their impact within a
network difficult.

The properties of real worms (packet size,
number of threads, port, and so on) cannot be
changed, which makes it hard to come up with
general conclusions about worm behaviour.

To avoid these problems it was decided to
create a worm emulation to test this scenario. This
was created in Java to enable it to run on any
machine. This emulation consisted of a malicious
process that scanned machines or sent a replication
packet or both and also a vulnerable process that
listened on a specific port for the infection packet

and started up a new malicious process when the
replication packet was received.

Since the exact properties of each worm are
different, the worm emulation software was not
written to fully emulate any of the known worms.
Instead it was decided to create general worm-like
processes that can imitate the properties of a
particular worm family. The distinction between
worm families was drawn based on type of protocols
used, replication strategies, level of network
congestion, and CPU time consumed. The two worm
families that were chosen for this test scenario were
Code Red and Slammer. Code Red propagates using
ICMP to detect machines and then TCP to propagate
between machines. This method of propagation
necessitates a large number of threads. Slammer, on
the other hand, simply generates a single UDP packet
and sends this to a randomly chosen host. Dependant
on the protocol used the malicious code can be either
embedded in the UDP datagram or TCP message.
The properties of these two worm families are
summarised in the table below.
Worm
Family

Protocol Number of
threads

Impact

Code Red ICMP
(machine detection)
TCP (propagation)

Large (99) CPU &
Network

Slammer UDP Small (1) Network

Table 1 Properties of the two worm families chosen

The Worm Emulation Software behaves as an
infected machine and for the Code Red family
emulation it uses the ICMP protocol to scan hosts on
the local network as well on the global network for
valid IP addresses, i.e. ones that actually exists. If it
does not receive a reply to the ICMP message the
address does not exist. The worm then tries to
replicate itself on every valid IP address.

More specifically, the worm emulation software
has between 1 and 99 threads running, which are
specifiable as a command line configurable argument,
each one sending ICMP type one requests (PING) to
a randomly generated IP address and listening for a
reply. The more threads the more virulent the worm.
A successful reply means the machine exists,
whereas an ICMP type three message (destination is
unreachable) means that this address is unavailable.
The global network scan uses randomly generated IP
addresses, whereas the local network scan takes into
consideration the address of the host machine and the
subnet mask. In case of a valid IP address, the Code
Red emulation tries to replicate on the other host
using the TCP protocol. Since only one out of eight
ICMP requests corresponds to a valid IP address (this
is due to the probability of generating an IP address
correctly in the procedure used) a machine infected
with this type of malicious code can be detected by
the number on ICMP type three messages sent to it.

To replicate the worm needs to find
vulnerabilities, e.g a service with known

vulnerability running on an open port of the potential
victim machine. After exploiting the vulnerability the
emulation establishes a connection between the
worm process and the vulnerable service process. It
will then try to replicate itself by sending a
replication message which is a sequence of one
packet messages. One of these packets contains
malicious code which initializes the replication
procedure on the recipient machine. Embedded
malicious code has a particular signature which is
used by the intrusion detection system to identify the
malicious activity on the network and take the
appropriate actions.

For the Slammer family emulation, the Worm
Emulation Software uses UDP for its propagation
and sends a single replication packet to a randomly
chosen IP address. To control the propagation rate,
the range from which this random IP address is set
using a command line argument.

The impact of the worm emulation upon the
electricity network and the Safeguard response were
measured by using Network Probe to monitor the
total network traffic. The worm emulation was
initially run without Safeguard and then with
Safeguard so that the effectiveness of the Safeguard
response could be evaluated. In the Safeguard tests, a
String was included inside the worm and a signature
written for Prelude to test the ability of Safeguard to
respond to a known worm. Safeguard was also tested
without Prelude to evaluate Safeguard’s ability to
detect and respond to an unknown worm on the
network. Two families of worm were emulated for
test purposes, namely Code Red and Slammer.

A set of workflows correspond to mechanisms
to detect an unknown worm were constructed. The
workflow shown in figure 4 is one of them. Linked
workflows relate to monitoring patterns of behaviour
of a suspected attacking host and another that is
initialized for each suspected victim machine. These
are initialized on the first indications and then they
build up evidence of attacker or victim. All the
workflows are within the correlation agent and run
simultaneously.

Experiment Worm family Number of
threads

Packet size
(Kb)

1 Code Red 26 & 20 65 & 30

2 Code Red 20 65 & 30

3 Code Red 20 65 & 45

4 Slammer 50 65

5 Unknown
Code Red

10 & 2 30

6 Unknown
Slammer

50 65

Table 2. Parameters for worm experiments

6 Results

The graphs below show the results of the tests
of the worm scenario using the worm emulation
software. The X axis represents time, with each cell
corresponding to 30 seconds. The Y axis displays
network throughput in Mbit/sec. In the graphs the
normal electrical activity on the network appears as a
regular jagged line just below the 2.0 Mbit/s level.
Irregular activity above this level indicates the impact
of the worm upon the network. The parameters of the
worm emulation for each experiment are included
below the graphs.

6.1 Code Red Type Impact

Experiment 1 without Safeguard

Figure 6 Network traffic to the control centre

As indicated in Table 2 the attacker worm with
parameters shown starts and spreads to the victim.
Here the worm emulation completely disrupts
network activity causing the flow of electrical data to
the control centre to fall to zero.

Experiment 1 with Safeguard

Figure 7 Network traffic to the control centre:

Code Red and Safeguard

The same dramatic impact on network traffic can be
seen as in Experiment 1. However the automatic
response of Safeguard manages to kill the worm and
the flow of electricity data eventually resumes.

Experiment 2 without Safeguard

Figure 8 Network traffic to the control centre: Code

Red and No Safeguard

With these parameter settings the Code Red worm
disrupts network activity and then continues to
propagate, seriously disrupting network traffic.

Experiment 2 with Safeguard

Figure 9 Network traffic to the control centre: Code

Red and Safeguard

The worm is killed quite rapidly here without a major
disruption of network traffic.

Experiment 3 without Safeguard

Figure 10 Network traffic to the control centre:
Code Red and No Safeguard

With these parameter settings the worm disrupts
network activity and then continues to propagate,
seriously disrupting network traffic.

Experiment 3 with Safeguard

Figure 10 Network traffic to the control centre:
Code Red and Safeguard

The worm is killed quite rapidly without a major
disruption of network traffic.

6.2 Slammer Type Impact

Experiment 4 without Safeguard

Figure 11 Network traffic to the control centre:

Slammer and No Safeguard

The impact of the Slammer worm with these
parameters is serious, but does not completely
eliminate the electricity traffic whose zigzag
signature can be seen continuing on top of the
Slammer traffic. Part of the reason for this is that
Slammer only copied itself onto two machines in this
experiment, which reduced the amount of network
disruption.

Experiment 4 with Safeguard

Figure 12 Network traffic to the control centre:

Slammer and Safeguard

The rapid response of Safeguard prevents any serious
disruption of network traffic.

6.3 Unknown worm impact

An unknown worm is in our case is simply a
worm that cannot be detected by Prelude and so has
to be detected only by the anomaly detectors. Such
detection is less specific, only indicating a deviation
from normality.

Experiment 5 with Safeguard

Figure 13 Network traffic to the control centre:
unknown Code Red worm and Safeguard

The surge of network activity and file integrity
modifications led to the unknown Code Red family
worm being rapidly detected and eliminated by
Safeguard.

Experiment 6 with Safeguard

Figure 14 Network traffic to the control centre:
unknown Slammer worm with Safeguard

The Slammer traffic led to the rapid detection of
the worm, but it took some time for the killing
messages to get through so that the recent worm
processes could be eliminated.

7. Future Work

The results presented are seen as early
indicators of the capabilities of the system and we
accept that there is a need for more comprehensive
testing over a wider range of scenarios and
parameters and investigation of the effects on agent
traffic in virulent cases. Techniques to improve the
performance of the system the case of unknown
worms are being investigated. An obvious, but still
important problem is that the response of Safeguard
was often hampered by the network congestion
caused by the worm. There is a need to have a
dedicated network for Safeguard or some kind of
dedicated bandwidth allocation for Safeguard traffic,
e.g. routing with DiffServe or Zebra [16]. Again it is
planned to look at this.

During the project a considerable amount of
effort was placed on devising anomaly detectors for
electricity and telecommunication data. For example,
sophisticated anomaly detection for network data
building on the BIRCH algorithm [12] was tested in
real network traffic, and a special technique based on
invariants in electrical data was developed. We plan
to integrate these into the electricity test bed and

evaluate the Safeguard system on large sets of data
extracted from electricity network simulations.

8. Conclusions

This paper has concentrated on an aspect of our
approach to correlation. By correlation is meant the
synthesis of information from diverse kinds of
anomaly detector and IDS and making sense of this
information. Information is synthesized for patterns
of attack that can extend over a period of time. The
time events occur can matter and one of the strengths
of the approach chosen is that this can be
accommodated in the correlation process. For
example, a scan in itself may not be significant, but
in the context of a suspected kind of attack it can
give supporting or contradictory evidence.

The experiments reported here demonstrate that
the worm emulation software has a significant impact
on the system performance and if no appropriate
measures are taken the network and individual
machines can come to standstill. With Safeguard in
place the worm activities can be detected and
eliminated successfully. In all of our test cases the
network was restored to its normal state. These
results suggest that the Safeguard method can be an
effective way of dealing with known and unknown
worms in the network. However more tests will need
to be performed to establish the parameters for this
response in more detail.

Whilst the experiments reported related to
worms, workflows can be used to model a wide
range of behaviour, ranging from monitoring the
actions of repair staff (and so recognising and
reacting to attacks from within) to detecting and
managing load shedding.

Acknowledgements

This work was partially funded by the CEC as
part of the Safeguard project, and help from our
partners is much appreciated: Aplicaciones en
Informtica Avanzada (AIA), Spain; ENEA, Italy;
Linköping University. Sweden; Swisscom Corporate
Technology. Switzerland. Also Frank J. Wesslowski
developed the graphical interface to the workflow
software while he was an MSc student the Electronic
Engineering Department.

We are also grateful for the support from the
EPSRC grant number GR/R97733/01 “Certificate
Based Distributed Firewalls for Secure E-commerce
Transactions”

References

 [1] Thomas M. Chen. “Intrusion Detection for
Viruses and Worms”
http://engr.smu.edu/~tchen/papers/iec2004.pdf
[2] Safeguard website. http://www.ist-safeguard.org/
[3] Layna Fischer (ed). “The Workflow Handbook
2003”. Published in association with the Workflow
Management Coalition (WfMC).

[4] W.M.P. van der Aalst. “The Application of Petri
Nets to Workflow Management”. Journal of Circuits,
Systems, and Computers, Pages 21-66, 1998.
[5] Workflow Management Consortium website.
http://www.wfmc.org
[6] Cosa website. http://www.transflow.com/english
[7] OpenWFE website. http://www.openwfe.org
[8] Bossa website. http://www.bigbross.com/bossa
[9] JavaBayes website. http://www-
2.cs.cmu.edu/~javabayes/Home/index.html
[10] J. P. Muller, M. Pischel, M. Thiel. “Modelling
reactive behaviour in vertically layered agent
architectures”. Intelligent Agents. pages 261276.
Springer Verlag, LNAI 890, 1995.

 [11] Ebayes website. http://www-
2.cs.cmu.edu/~javabayes/EBayes/index.html/
 [12] K. Burbeck, S. Nadjm-Tehrani. "ADWICE -
Anomaly Detection With Fast Incremental
Clustering”. submitted for publication, Draft version
available from [2].
[13] D. Gamez, S. Nadjm-Tehrani, J. Bigham, C.
Balducelli, K. Burbeck, T. Chyssler. Chapter 19:
Safeguarding Critical Infrastructures, “Dependable
Computing Systems: Paradigms, Performance Issues,
and Applications”. Wiley [Imprint] Inc. 2005.
[14] Prelude website. http://www.prelude-ids.org/
[15] Afick website. http://afick.sourceforge.net/
[16] Zebra website. http://www.zebra.org/

